微流体数字化技术制备基因芯片微阵列



采用以脉冲为微流动基本形态、脉冲当地惯性力为主动力的微流体数字化技术进行了基因芯片微阵列制备实验。在搭建的基于微流体数字化技术的基因芯片微阵列制备系统上,实验验证了脉冲点样系统参量(收敛角2θ、微喷嘴内径d、电压幅值U和驱动频率f)对样点直径和脉冲点样稳定性的影响规律。以实验规律为依据,提出了制备样点直径约为100 μm的中等密度微阵列的实验路线,制备出了样点平均直径为102.2 μm、微阵列密度约为4 000 spot/cm2的基因芯片微阵列(点样溶液为3×SSC柠檬酸盐缓冲液)。得到的研究结果可为建立高密度基因芯片脉冲点样技术提供实验研究基础。

关键词

Abstract

A preparation experiment of genechip microarrays was carried out by the microfluid digitalization, in which the pulse is basis forms of the microfluidic flows and the microfluidic flows are driven by the pulsed local inertia force in micro channels. Based on the technology, an experimental system to prepare genechip microarrays was built to study the effect the nozzle inside falloff angle 2θ, nozzle inner diameter d, voltage amplitude U, and the driving frequency f on the droplet diameter and pulse potting stability. The experimental scheme for preparing the microarrays was proposed and then the moderate microarray with the droplet average diameter of 102.2 μm and the density of microarray of 4 000 spot/cm2 were manufactured by using 3×SSC citrate buffer as spotting solution. The results in this paper can provide a experimental basis for establishing a high-throughput microarray pulse spotting technology.

微流体数字化技术制备基因芯片微阵列

补充资料

微流体数字化技术制备基因芯片微阵列

中图分类号:Q819;TP273

DOI:10.3788/ope.20111906.1344

所属栏目:微纳技术与精密机械

基金项目:国家自然科学基金资助项目(No.50975152);南京理工大学自主科研专项计划资助项目(No.2010GJPY006);教育部博士学科点专项科研基金资助项目(No.20060288005)

收稿日期:2010-12-27

修改稿日期:2011-03-07

网络出版日期:--

作者单位    点击查看

耿鑫:南京理工大学 机械工程学院,江苏 南京 210094
侯丽雅:南京理工大学 机械工程学院,江苏 南京 210094
杨眉:南京理工大学 机械工程学院,江苏 南京 210094
王洪成:南京理工大学 机械工程学院,江苏 南京 210094
章维一:南京理工大学 机械工程学院,江苏 南京 210094

联系人作者:耿鑫(suyu_xinxin@sohu.com)

备注:耿鑫(1982-)男,江苏沛县人,博士研究生,2005年于南京理工大学获得学士学位,主要从事微流体数字化技术及其应用的研究。

【1】ALBERTO P. Biochips:technologies and applications [J]. Materials Science and Engineering:C, 2008,28(4):495-508.

【2】汤建新,陈洪,何农跃. 活版印刷技术原位合成DNA微阵列[J].中国科学B辑, 2006,36(6):493-500.
TANG J X,CHEN H,HE N Y. In situ synthesis of DNA microarray by typography printing [J].Science in China(Series B), 2006,36(6):493-500. (in Chinese)

【3】戴亚斌,何农跃,刘梅.基因芯片技术及其在微生物检测中的应用[J].动物医学进展,2006,27(10):41-46.
DAI Y B, HE N Y, LIU M. Gene chip technique and its application in microbe detection [J]. Progress in Veterinary Medicine, 2006,27(10):41-46. (in Chinese)

【4】TILLIB S V, MIRZABEKOV A D. Advances in the analysis of DNA sequence variations using oligonucleotide microchip technology[J].Curr Opin Biotechnol, 2001,12(1):53-58.

【5】孙继勇,鲁晓杰. 基因芯片核心技术及其最新进展[J]. 国际检验医学杂志,2009,30(5):467-471.
SUN J Y, LU X J. Advance in the studies on key techniques of gene chips [J]. International Journal of Laboratory Medicine, 2009, 30(5): 467-471. (in Chinese)

【6】杨彬,刘乐,刘智毅,等.线扫描准共焦荧光成像[J].光学 精密工程,2010,18(5):1028-1034.
YANG B, LIU L, LIU Z Y, et al..Line-scanning quasi-confocal fluorescence imaging [J]. Opt. Precision Eng.,2010,18(5):1028-1034. (in Chinese)

【7】乔治,金庆辉,许宝建,等. 基于MEMS的生物微喷点样技术研究现状与展望[J]. 微纳电子技术, 2006,10:483-486.
QIAO ZH, JIN Q H, XU B J, et al.. Development and review of MEMS-based Bio-Micro-Dispensers Technology[J]. Micronanoelectronic Technology, 2006,10:483-486. (in Chinese)

【8】KOLTAY P, BIRKENMEIER B, STEGER R, et al.. Massive parallel liquid dispensing in the nanoliter range by pneumatic actuation[C]. Proc Actuator. Bremen, Germany, 2002:235-239.




上一篇:植物防御的新发现: 植物
下一篇:基因拟南芥差异表达基因