14分+的利用深度学习从切除淋巴结组织病理学图



N分期是预后评估和基于分期的癌症治疗策略决策的决定性因素。目视检查完整淋巴结的整个切片是目前病理学家计算转移淋巴结(MLNs)数量的主要方法,即使在同一个N期,患者的预后也有很大差异。

背景介绍深度学习在医学图像处理上已经被广泛应用,今天小编为大家带来的这篇文章,作者提出了一个深度学习框架,通过分析胃癌(GC)的淋巴结全视野数字切片(WSI),来识别淋巴结(LN)和肿瘤区域,并提出了肿瘤面积与MLN面积比(T/MLN),可作为胃癌的一个独立预后因素。文章发表在《nature communications》上,影响因子为14.919,文章题目为:Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning。

14分+的利用深度学习从切除淋巴结组织病理学图

数据介绍从CH医院和JX医院获得GC LNs的WSI,经过质量筛选最终选择出了9366个WSI,从中 选择了21965个LN,其中7736个有转移病灶。 结果解析01LN WSIs自动分析的工作流程 本研究的工作流程如图 1 所示。 首先,对 H-E 染色的 LN 病理切片进行数字化。 然后, 选取少量样本让病理学家进 行详细标注,并对分割网络和分类网络进行训练。 使用经过训练的网络分析了所有 WSI 。 接下来,根据系统的输出计算每个 GC 患者的 T/MLN 。 最后,根据 T/MLN ,根据每个患者的 N 分期,通过 Kaplan-Meier ( KM )分析分析 GC 患者的总体生存率。 此外,本研究在两个独立数据集上验证了这些结果: 来自 CH 医院 2006 -2008 队列和 JX 医院 2016 -2019 队列的 GCLNs 。 其中, 分割网络采用U-Net体系结构。 使用神经网络条件随机场(NCRF)作为分类网络。使用ResNet-50提取patch特征,并使用条件随机场对patch的空间相关性进行建模。

14分+的利用深度学习从切除淋巴结组织病理学图

图 1

02淋巴结转移的深度学习框架诊断 开发的深度学习框架如图2a所示。该框架包括三个阶段:分割、分类、T/MLN计算。LN分割网络使用U-Net架构从WSIs的1倍放大缩略图中提取LN区域。然后,通过700个有标记的WSI(包括1321个LN在内)对网络进行全面训练。在验证集上测试了分割网络的性能,发现平均Jaccard指数为95.8%,平均Dice分数为98.6%。算法输出示例如图2b所示,其中排除了LNs外的脂肪组织和肌肉纤维。在AI辅助诊断输出热图后,病理学家检查热图的高置信度区域并纠正其错误区域。 在确定LNs轮廓和肿瘤成分后,计算分析系统可以直接精确计算出肿瘤成分和LNs的比例(从0.01%到100%)。

14分+的利用深度学习从切除淋巴结组织病理学图

图 2

03利用AI辅助分析改进诊断过程

病理学家在诊断肿瘤组织方面具有更好的特异性,而AI具有更好的敏感性和速度。病理学家与AI相结合的协同作用比临床医生与AI的对比更具临床意义。在这项研究中,两位高级病理学家进一步回顾了基于这些热图的所有WSI,即 AI辅助模式。在AI辅助识别的6.8%(360/5299)的MLNs中,肿瘤病灶未被病理学家发现,在1.5%(82/5299)的病理诊断的MLNs中,肿瘤病灶未被AI发现。综上所述,仅AI的准确率为96.9%(14761/15234),灵敏度为98.5%(5217/5299),特异性为96.1%(9544/9935)(图3)。

14分+的利用深度学习从切除淋巴结组织病理学图

图 3

04用T/MLN预测肿瘤预后

LN的数量和MLN的比率,尤其是前者(图4a),与患者预后密切相关。然而,目前的N分期系统忽略了一个重要因素,即MLN中转移性肿瘤细胞的面积(T/MLN),该因素在不使用深度学习的情况下很难获得,但却与癌症患者的预后相关(图4b)。

图 4

基于深度学习精度计算T/MLN,表明随着N分期的改进,T/MLN可能从N1时的0.270±0.318增加到N2时的0.395±0.293,以及N3时的0.517±0.243。此外,即使在同一阶段,不同患者的T/MLN也存在显著差异(图4c)。如图4c所示,在N1期的GC患者中,有一半的T/MLN<5%,而另一半患者的T/MLN值范围很广,从5%到100%。使用单因素生存分析,发现较高的T/MLN(>0.45)与不良预后相关(风险比HR=2.05,95%可信区间CI1.66-2.54,P<0.001)(图4d-f)。为了评估T/MLN的独立预后能力,我们接下来进行了多变量分析。在多变量Cox回归中,包括T/MLN、N分期、组织学分级、年龄、大小、组织学类型、Lauren类型、病理肿瘤分期、手术类型,输血、位置和性别,T/MLN的HR为1.39,95%CI为1.10-1.75(P=0.007)。




上一篇:温州、台州、金华南京等地区事业单位招聘(
下一篇:蓝丰生化 (002513)处罚已下达,正式起诉阶段