使用非对称流场流动分级 AF4和光散射探测亚微米



光散射仪器广泛用于表征溶液中的​​大颗粒和纳米颗粒。它提供了使用多角度光散射(MALS),差示粘度测量,场流分级(FFF),动态光散射(DLS),电泳迁移率和确定绝对摩尔质量,大小,构象,电荷和相互作用的尖端工具。成分渐变。

使用非对称流场流动分级 AF4和光散射探测亚微米蛋白质聚集

Wyatt在仪器和软件方面的最新发展使FFF的全部潜力可以为更广泛的用户群所用。在这次采访中,Kim R. Williams和Christoph Johann就新技术及其研究与新闻 - 医学和生命科学进行了交流。

FFF最突出的特点是什么?我们为什么要使用FFF?

CJ:首先,我们应该回顾一下FFF最突出的特点。FFF根据尺寸物理分离样品,因此它允许我们收集馏分。使用Eclipse FFF系统,我们可以将实体从仅几纳米到几微米的尺寸分开。此外,该技术温和,施加低剪切力,并且是非破坏性的。

当与MALS结合使用时,FFF特别有效,MALS提供洗脱级分的绝对摩尔质量和大小。因为它结合了基于尺寸的分离和在线光散射,所以它具有比标准批量或未分级DLS更高的分辨率。

此外,我认为支持离线方法开发的新SCOUT DPS软件是一个令人兴奋的附加功能。该软件最大限度地减少了方法开发所需的实验数量。只需少量注射即可获得最佳结果,而不是在实验室中花费数小时。

从FFF实验中获得什么类型的数据?

CJ:我们可以从每个洗脱体积的多角度光散射分析中获得绝对摩尔质量和RMS半径的详细分布。此外,我们可以通过动态光散射计算每个洗脱体积的流体动力学半径,或者从FFF保留时间得出它。

对于大分子,浓度来自UV或折射率检测器以获得定量分布,而对于纳米颗粒,颗粒浓度的分布仅通过光散射来量化。

您如何确保蛋白质不与AF4膜相互作用?

KRW:重要的是验证蛋白质与AF4中使用的膜之间没有相互作用,特别是当AF4用于从保留时间计算粒径时。

我认为在没有交叉流动的情况下进行初始运行总是明智的,以确保注入足够的样品并且在检测器中获得非常大的峰值。如果您发现自己处于完全样品丢失的严重情况,您可以通过降低场强或交叉流速来纠正它。

通过预处理膜,例如通过注入蛋白质溶液,或通过减少盐负荷,也可以减少相互作用。我发现50毫摩尔氯化钠溶液,甚至没有加入盐的磷酸盐缓冲液都可以提高FFF的分辨率和回收率。您不必总是使用含有150毫摩尔氯化钠的PBS缓冲液,这在体积排阻色谱MALS中很常见。

你能描述Eclipse FFF吗?

CJ:我认为最重要的是Eclipse FFF易于使用,同时又是一个强大而强大的系统。它结合了三个关键特性:无缝集成;完整系统的完全自动化和广泛的数据处理能力。

能够使用新的VISION CSH软件平台将完整的工作流程从方法开发集成到最终结果非常棒。这包括用于仪器控制和运行实验的VOYAGER CDS应用程序以及用于数据处理和方法开发的SCOUT DPS应用程序。

我希望我们在仪器和软件方面的新发展将使更多用户能够获得FFF的全部潜力。

如何使用SCOUT进行方法开发?

CJ:SCOUT帮助我们选择正确的流程来实现理想的分离。我们只需要将我们想要的通道几何形状和假定的样品粒度范围输入到SCOUT中,建立一个标称流程序,并且通过它可以直接给出一个预测的分形图。

流程程序包括通道流速和横流速率随时间的演变。预计的峰值立即显示其计算的保留时间,并且它还给出了峰值稀释度。我们可以更改参数,例如通道长度或流速,以查看效果。这一切都很快就由软件决定,为我们节省了大量的实验时间。

根据我们的经验,SCOUT预测非常准确,并且紧跟实际实验的UV痕迹。

通过这种方式,我们可以直接找到一种能够提供合适分辨率的方法。一旦我们选择了合适的方法,我们就可以将它导出到VOYAGER,它将运行实验。

FFF如何帮助了解抗体的聚集动力学?分析生物药物有哪些挑战?

KRW:常规药物通常是配制成胶囊的小分子,具有较长的保质期。相比之下,生物治疗药物或生物药物是形态上异质的大型复杂分子。

它们在溶液中配制并通过注射器注射或静脉内输注施用。与他们的分析相关的主要挑战源于他们往往不稳定且对压力敏感的事实。

因此,对我们来说,使用不会使生物药物降解或变性的分析过程非常重要。有多个加工步骤和应激源可导致不可逆的变性,例如温度,pH和溶液组成。




上一篇:苹果回应向腾讯传输数据:是标记恶意网站的安全功能
下一篇:传染病防治国家科技重大专项获2014年国家科技奖