金属和金属氧化物纳米酶的性能、机制和应用



当前位置:纳微科技 > 生物医学 > 正文

NML综述 | 金属和金属氧化物纳米酶的性能、机制和应用 A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications

Qianwen Liu, Amin Zhang*, Ruhao Wang, Qian Zhang, Daxiang Cui*

Nano-Micro Letters (2021)13: 154 

https://doi.org/10.1007/s40820-021-00674-8

金属和金属氧化物纳米酶的性能、机制和应用

本文亮点

1该综述概述了各种结构的金属和金属氧化物纳米酶的特性、优缺点及合成方法;

2. 该综述讨论了金属和金属氧化物纳米酶的内在催化活性和催化机理

3. 该综述总结了近年来金属和金属氧化物纳米酶在生物分析、消炎、抗菌和抗癌领域的最新应用进展

内容简介

2007年,Gao课题组发现磁性氧化铁纳米颗粒(Fe₃O₄ nanoparticles)具有显著的酶样活性。自此,越来越多具有催化活性的纳米材料被发现、设计、报道。纳米酶是一种极富有潜力的天然酶替代物,并且已经在临床医学,食品安全,环境监测和化工生产等多个领域取得了良好的研究成果。由于具有低成本、高稳定性、易于批量生产、储存等优势,金属和金属氧化物纳米酶的发展在过去的十年里更是取得了飞跃性的进步。众所周知,催化活性和催化机理的分析对于新型纳米酶的设计与应用具有基础性作用。目前已经报道的金属和金属氧化物纳米酶可主要分为氧化还原酶家族和水解酶家族。上海交通大学崔大祥课题组在本综述中,在概述其特性和合成方案的基础上,首先介绍了具有类氧化还原酶活性的纳米酶的催化机理以及内在活性调节机制。之后,对于近年来金属和金属氧化物纳米酶在生物分析、消炎、抗菌和抗癌领域的主要应用方向和进展做了回顾。最后,本文总结了金属和金属氧化物纳米酶现阶段面临的挑战,并对其未来的发展进行了展望。

图文导读

I 金属和金属氧化物纳米酶的结构特性与合成方案

一般来说,现有的基于金属和金属氧化物的纳米酶可以大致分为单金属、金属合金、金属氧化物、金属核/壳纳米结构和杂化纳米材料。 单金属纳米酶通常是在自然条件下具有显著化学稳定性的贵金属纳米材料。它们通常具有与多种生物分子配体和抗体的易接合位点、显著的表面等离子体共振特性、优异的光学和光热转换特性。单金属纳米酶可以通过预成型种子介导生长,高温还原法,电化学合成,光化学法,生物合成和空间限制介质/模板法来制备。 金属合金纳米酶常见的化学合成方法包括一锅法、电偶置换反应、CO还原法、水热生长法、电沉积法等。由于这多种组分的协同效应,双金属纳米合金往往表现出优于贵金属纳米材料的光学和化学性能,以及更好的催化性能。 与贵金属纳米材料相比,金属氧化物纳米酶通常具有较低的价格和简洁的合成工艺。此外,它们还表现出许多独特的性质,如磁性、荧光猝灭和介电性质。近年来,金属氧化物纳米酶的制备方法多种多样,包括脉冲激光烧蚀法、共沉淀法、溶胶-凝胶法和热分解法。 而通过水热反应、溶剂热法、溶胶-凝胶法、原子层沉积,可以制备基于金属核/壳(无机/无机)纳米结构的纳米酶。通过调整不同的材料和修饰结构,研究人员可以方便地掌控基于核/壳结构的纳米酶的稳定性和功能性。 基于金属和金属氧化物的杂化纳米酶可以通过在金属或金属氧化物纳米材料表面修饰有机分子或聚合物来制备。一般来说,杂化纳米酶的内在特性可能归因于大小、含量和组分结构。

II 金属和金属氧化物纳米酶的催化机理和活性调节机制

目前已经报道的金属和金属氧化物纳米酶可主要分为氧化还原酶家族和水解酶家族。而大部分的纳米酶都具有类氧化还原酶活性,包括过氧化氢酶(CAT)、过氧化物酶(POD)、氧化酶(OXD)和超氧化物歧化酶(SOD)。大量研究表明,纳米酶的活性不仅与纳米材料自身的特性(组成元素、尺寸、形态、表面修饰)有关,也受到外部因素(环境pH值、温度、光照、离子)的影响。 Celardo等人在2011年曾提出CeO₂纳米粒子CAT样活性与SOD样活性的电子转移机制,该模型被认为是一种经典的假设机制,但也存在一定的局限性。Wang等人深入研究了纳米氧化铈的结构和电子性质,提出了原子水平的CAT样活性催化机制。在该模型中,CeO₂(111)表面氧化过氧化氢分子以形成氧分子和H₂-CeO₂(111)表面。之后,另一个过氧化氢分子则与H₂-CeO₂(111)表面反应生成水分子(图1a)。 基于POD样纳米酶的催化反应一般可归纳为Fenton或Fenton样反应或电子转移过程。而Maxim A等人对生物相关的超氧物驱动Fenton反应条件下•OH的生成提出新的观点。基于自旋俘获电子顺磁共振(EPR)实验,他们发现纳米颗粒表面的反应而不是纳米颗粒释放的金属离子是造成γ-Fe₂O₃和Fe₃O₄纳米粒子的POD样活性的原因(图2b)。此外,γ-Fe₂O₃表面催化中心的•OH生成速率比溶解态金属离子的生成速率至少高50倍。 目前已经发现了大量金属基和金属氧化物基的氧化酶模拟物,中间体的形成和电子转移过程已被证明对这些纳米酶的OXD样性质有重要影响。Zhang等人提出的Mn₃O₄纳米粒子的可能反应机理如图1c所示。在这个模型中,作为中间产物的•OH/O₂•−与Mn³⁺可共同催化TMB氧化。 在严格的密度泛函理论和微观动力学模型的帮助下,Gu等人研究了Langmuir-Hinshelwood(LH)和Eley-Rideal(ER)机制,以分别描述Co₃O₄和Fe₃O₄的SOD样活性。如图1d所示,ER机制对于Co₃O₄更为可行,因为通过ER机制的势垒低于沿着LH机制的势垒。同样的道理,LH机制对于Fe₃O₄更为可行(图1e)。


上一篇:压电薄膜的特性、制备和应用
下一篇:宜昌男子贪杯致小肠穿孔