Nature深度综述:mRNA技术的开发策略与未来



  mRNA技术在新冠疫苗开发方面的成功,不但在广大人群中积累了丰富的积极疗效和安全性数据,而且展示了将mRNA技术从研发推动到监管批准的道路。这一领域的创新产品开发也成为人们关注的领域。

  几十年前,科学家们就设想能够基于mRNA开发出安全、有效的核酸疫苗。如今这一愿望照进现实,使用LNP递送mRNA疫苗在预防新冠方面已取得成功。随着mRNA技术和LNP递送技术的不断完善,这一创新治疗模式有望超越传染病疫苗,解决传统小分子和抗体疗法无法解决的问题,为癌症、罕见疾病、神经系统疾病等其它疾病类型提供更有效,更持久的治疗选择。

  近日,Nature Reviews Drug Discovery发表了两篇文章,一篇深度综述详细介绍了mRNA疫苗的技术基础,以及预防传染病的mRNA疫苗开发的关键因素;另一篇文章对目前的mRNA研发管线进行了盘点。今日,药明康德内容团队将与读者分享这两篇文章的精彩内容。

  mRNA的设计和合成原理

  mRNA疫苗的主要部分之一是人工合成的mRNA分子,它们指导细胞生成激发免疫反应的抗原。mRNA的结构可以分为5个部分,从5’端开始,分别是5’端帽,5’非转录区(UTR),编码抗原的开放阅读框,3’UTR和多腺嘌呤尾。每个部分对于mRNA疫苗的正常工作都至关重要。

  5’端帽的作用之一是防止mRNA被细胞中识别病毒RNA的传感器发现,从而预防不必要的免疫反应。它还保护mRNA不受到核酸外切酶的降解。

  3’多腺嘌呤尾的长度间接调节mRNA的转译和半衰期。它与5’端帽,以及与多腺嘌呤尾结合蛋白和转译启动蛋白一起,募集核糖体并且启动转译过程。

  5’和3’UTR调节mRNA的转译、半衰期和细胞内定位。对UTR的工程化设计可以改变mRNA的细胞定位,或者降低mRNA的降解。

▲mRNA结构的5个部分(图片来源:参考资料[1])

  编码抗原的开放阅读框是最重要的一部分。这一部分的改良包括对mRNA密码子的优化,将不常用的密码子转换为编码同一氨基酸的常用密码子可以提高转译水平。例如,CureVac公司的新冠疫苗CVnCoV就使用了密码子优化。

  提高转译的另一个改良措施是引入修饰过的核苷,例如假尿嘧啶,N1-甲基假尿嘧啶等核苷。由于自然mRNA都包含修饰过的核苷,因此免疫系统会将未修饰过的单链RNA识别为病毒感染的标志。人体细胞中的Toll样受体(TLR3、TLR7、TLR8)以及RIG-I受体称为模式识别受体(pattern recognition receptors),它们能够触发1型干扰素的产生,从而阻断mRNA的转译。

  使用修饰过的核苷能够防止模式识别受体的识别,从而让mRNA生成足够水平的蛋白抗原,激发免疫反应。Moderna和辉瑞/BioNTech的mRNA新冠疫苗都使用了修饰过的核苷。

  CureVac防止mRNA被模式识别受体发现的策略是通过序列工程化和密码子优化来消除疫苗mRNA中的尿嘧啶,同时提高GC水平。

图片来源:123RF

  在改良mRNA序列之外,过去几十年里,mRNA的生产工艺也得到了简化。目前临床使用的合成mRNA从质粒DNA转录而成。mRNA的多腺嘌呤尾序列已经编码到质粒DNA中,从而避免了添加多腺嘌呤尾的步骤,在降低生产时间的同时减少了材料损失。

  将多腺嘌呤尾序列加入到质粒DNA中同时解决了多腺嘌呤尾合成长度不一的问题。通常,多腺嘌呤尾长度超过100个碱基对于治疗性mRNA效果最佳,然而过长的多腺嘌呤序列会导致质粒DNA的稳定性下降,不利于转录。解决这一挑战的策略包括在多腺嘌呤尾中添加一个序列为UGC的连接子。辉瑞/BioNTech的新冠疫苗BNT162b2就使用了这种连接子。

  这些多方面的创新结合在一起,克服了mRNA生产方面的诸多挑战,促进了简易、有效、可扩大化的mRNA合成流程的诞生。

  递送mRNA疫苗的载体

  因为mRNA是一个包含负电荷的大分子,它无法穿过由阴离子脂质构成的细胞膜,而且在体内,它会被先天免疫系统的细胞吞噬,或者被核酸酶降解,因此需要创新的递送载体。目前的递送载体包括以下几种类型:

  脂质纳米颗粒

  脂质纳米颗粒(LNP)是目前临床进展最快的mRNA递送技术,目前所有获得授权使用的新冠mRNA疫苗均采用LNP作为载体。LNP具有多种优势,包括配方简易、具有模块性、生物相容性和mRNA载荷水平高。

  通常LNP包含四种成分,可电离脂质(ionizable lipid)、胆固醇、辅助磷脂和PEG修饰的脂质分子。它们结合在一起保护脆弱的mRNA分子。




上一篇:印迹细胞(engram cells)的集合:记忆的本质
下一篇:2019土壤石油类的测定红外分光光度法