清华学者主导干湿结合“下一代细胞工厂”开源使能平台问世!数据驱动全基因组基因型-工业表型关联技术,赋能合成生物学高效底盘



1976 年 1 月的一天,一位年轻的风险投资人和一位微生物学教授走进了加州大学旧金山分校(UCSF)附近的酒吧,原定十分钟的会面时间延长到了三个小时。从那一刻起,一家改变生物技术史的公司就此诞生。他们使用 GENetic ENgineering TECHnology 的缩写命名了这家公司——Gen-en-tech(基因泰克)。

 

图片

图丨Genentech 的联合创始人赫伯特·博耶(Herbert Boyer)博士(左)和风险投资人罗伯特·斯万森(Robert A.Swanson)先生(右)(来源:资料图)

 

Genentech 公司首次成功地将人胰岛素的 DNA 重组到大肠杆菌细胞内的质粒上,让大肠杆菌作为细胞工厂生产出重组人胰岛素,并将其产品化。从此,正式拉开了基因工程的序幕。

 

然而,四十多年过去了,人们在技术层面上重组表达胰岛素,几乎只做了一件事——把外源的 DNA 放进细胞,让这个基因转录成 RNA,翻译成蛋白质,然后再围绕着该外源 DNA 的表达翻译效率做些工程化改造。

 

蛋白要在宿主细胞中高效表达,其实不仅是信息传递。原料供应、肽链延长、翻译后修饰,折叠、分泌乃至应急修复等,诸多环节都有可能影响到蛋白表达的效率。


“要让细胞这台精巧的蛋白质‘3D 打印机’高效率运转,在全基因组层面有大量的基因发挥着不可或缺作用。然而,尽管我们在基础研究的层面认识到这件事,但是,到工程层面上,还很难做到全基因组层面的工程化以提升细胞的蛋白表达效率,我们目前的认识还很浅。”清华大学张翀教授表示。


张翀是清华大学长聘副教授,国家级青年人才计划获得者,主要研究方向为微生物智能制造,开展高通量基因型-表型关联原创技术与装备的研究,包括微生物工业表型高通量表征与连续进化,全基因组规模基因及位点功能挖掘,基因型与工业表型关联研究装备等。

 

图片

图丨张翀(来源:张翀)

 

迄今为止,细胞工厂已能够生产抗生素、氨基酸、重组蛋白、生物能源、生物塑料乃至“人造肉”,被广泛地应用在生物制造、制****、食品、能源和农业等领域。


但是,与重组胰岛素合成的案例一样,目前人们对外源途径改造较多,但对全基因组层面底盘细胞本身了解较少,进而制约了对其系统化工程改造的能力,细胞底盘自身的潜能还没有被系统地挖掘。


如果把外源途径的基因序列比作图纸,把细胞比作车间,那么,现有的努力大多是在“图纸”上下功夫,但是仍然十分缺乏对“车间”全局的系统认知和工程化改造的能力。


 从随机诱变到全基因组定制,多项技术催生底盘细胞“发现新大陆”


合成生物学细胞工厂构建的核心是如何通过设计合适的基因型,从而得到人们想要的工业表型。张翀教授认为,在基因组时代,科学家可通过各类公开生物学数据库得到大量的基因型相关的测试数据,但是,真正有价值的是能得到与工业表型关联的基因型数据。


图片

图丨合成生物学常关注的工业表型(来源:该团队)


随着分子生物学和基因工程研究方法的不断发展,细胞工厂的构建策略经历了不同的历史阶段。相较于早期主要通过非理性诱变育种技术获得目标产物高产菌株的方式,20 世纪 90 年代以来,随着分子生物学、基因工程技术的逐步引入,代谢工程学科正式创立。


代谢工程利用重组 DNA 技术对生物体中已知的代谢途径进行有目的的设计,并对细胞内的基因网络进行调控和优化,构建具有特定功能的细胞工厂,例如提高目的产物的产率。

 

然而,代谢工程指导的设计方法大多都基于已知的生物学知识,由于微生物代谢网络中存在诸多可能对目标产物工业表型产生影响的未知因素,或称为“生命暗物质”。这一手段获取新知识的效率不高,细胞工厂改造过程仍然需要耗费大量的时间和精力。


图片

图丨细胞工厂设计和构建发展历程与展望 (来源:该团队)


那么,为了让让细胞工厂的设计更高效,如何去解析这些“生命暗物质”呢?

  




上一篇:2022辽宁教师资格考试:“生物圈中的植物”易考
下一篇:一文读懂固态氢技术和应用前景