IVD赛道火热背后,临床检验器械行业迈入快速发展期!



近年来,随着生物学、医学、生理学等生命学科研究的不断深入,生物样品在临床诊断的重要作用日益突出,临床医生对生物样品检验仪器有了更多的需求。

临床检验器械是多学科技术相互结合的产物,涉及光学、机械、电子、材料、传感器、生物化学等多个技术领域。

伴随着化学发光、分子标记、荧光偏振、生物芯片等技术的兴起,临床检验技术朝着样本量更少、灵敏度更高、速度更快、分析更自动化的方向不断发展,检测设备的小型化和操作简便化让临床检验不再需要严格的实验环境,甚至不用专业人员即可进行。

图表1  医学检验实验室


一、定义

临床检验是将病人的血液、体液、分泌物、排泄物和脱落物等标本,通过目视观察、物理、化学、仪器或分子生物学方法检测,并强调对检验全过程(分析前、分析中、分析后)采取严密质量管理措施以确保检验质量,从而为临床、为病人提供有价值的临床实验资料。

临床检验器械即在临床检验过程中用于取样、样本处理、检测、分析等操作的仪器,包括用于临床检验实验室的设备、仪器、辅助设备和器具及医用低温存贮设备。临床检验器械是设备,不属于体外诊断试剂,部分临床检验器械需要配合体外诊断试剂盒来实现样品检验功能。

图表2  临床检验器械与体外诊断试剂的关系


二、发展阶段

1起源

医学检验历史可以追溯到公元前300年,希波克拉底提倡尿液检查诊断疾病。到了17世纪初,随着显微镜技术的发展,医学研究者开始尝试通过显微镜观察样本辅助诊断疾病,但是一直以来都没有较好的分析检测仪器给予他们更多的支持。

最早出现的医学检验仪器是分析类仪器,分析仪器是以分析化学、电化学为基础,吸纳物理、生物、统计、计算机、自动化等学科理论知识,科学地解决物质定性或定量分析的仪器。分析仪器的发展得益于各类分析方法的建立。

(1)色谱法的建立

1906年,俄国的茨维特将绿叶提取汁加在碳酸钙沉淀柱顶部,继用纯溶剂淋洗,从而分离出叶绿素。不过当时这个研究成果并没引起注意,直到1931年德国的库恩和莱德尔再次重现此法,并慢慢发展成早期的色谱分离。

气体吸附层析则是始于20世纪40年代,德国的黑塞利用气体吸附以分离挥发性有机酸。英国科学家格卢考夫也用同一原理在1946年分离空气中的氢和氖。而提出了气体分配层析法根据液液分配原理的英国科学家马丁和辛格获得1952年诺贝尔化学奖。

图表3  气相色谱演示


(2)光谱分析法的建立

原子发射光谱始于1665年牛顿用棱镜分出太阳光的七条色带。而后1815年夫琅和费发现太阳光谱中的暗线并命名为“夫琅和费线”。44年后本生和他的同事基尔霍夫在研究元素在火焰中的特征发射和吸收光谱时,指出了“夫琅和费线”就是原子吸收线。之后,人们将揭示物质对光的吸收与物质厚度和浓度之间的关联的朗伯定律和比尔定律结合为朗伯-比尔定律,光谱理论得到进一步提高。

图表4  夫琅和费线


(3)电化学分析方法的建立

1834年,法拉第定律的发现为电化学奠定了定量基础。1889年能斯脱提出了能斯脱公式,将电动势与离子浓度、温度联系起来,奠定了电化学的理论基础。随后,电化学分析法发展出电沉积重量法、电位分析法、电导分析法、安培滴定法、库仑滴定法、示波极谱法等分析方法学。氢电极、玻璃电极和离子选择性电极陆续制成,尤以极谱分析技术为检测分析做出了卓著的贡献。


2发展

三大分析方法的建立推动了近代分析类仪器的形成。

在20世纪初,紫外分光光度仪、原子吸收光谱仪、气相色谱仪、原子荧光光谱仪等各类仪器相继面世。医学工作者有了更多的仪器设备来做检验检测而不再仅仅通过目视或者比色法来做诊断,但这种检验检测尚处于检测简单的无机物。随着医学的发展,医生对于人体内物质的有机物乃至细胞的检验有了更多的需求。

(1)免疫诊断分析仪




上一篇:新能源汽车产业链集体爆发,盐湖提锂概念有望
下一篇:肽,多肽,多肽合成,多肽合成服务