天大化学再造酵母走向应用 《自然通讯》三篇研究长文同期发表



本站讯 2018年5月22日,天津大学元英进教授带领的合成生物学研究团队在《自然通讯》期刊同期发表三篇研究长文,文中介绍了精确控制基因组重排技术等一系列研究成果。该成果填补了基因组结构变异的技术空白,提高了细胞工厂的生产效率,加速了微生物的进化和生物学知识的发现。这是继人工合成酵母染色体打破非生命物质和生命物质界限后,中国科学家在“设计生命、再造生命、重塑生命”进程中的又一重大技术进展,开启了合成生物学研究中基因组重排这一全新研究领域。

天津大学合成生物学团队的贾斌与吴毅等人完成了《精确控制合成型单倍体和二倍体酵母基因组重排》(Precise control of SCRaMbLE in synthetic haploid and diploid yeast);天津大学合成生物学团队的吴毅与朱瑞莹等人完成了《体外DNA重排》(In vitro DNA SCRaMbLE);美国纽约大学Michael Shen与天津大学合成生物学团队的吴毅等人完成了《杂合二倍体与跨物种基因组重排》(Heterozygous diploid and interspecies SCRaMbLEing)。

在生命科学领域,遗传变异是生物进化的源泉,促使生物在亿万年间可以不断适应环境、不断进化。科学家们也开发出多种遗传变异技术,来获取多样的DNA,从而为获取多样的生物特征提供原料。然而以前的DNA变异技术大多只针对基因层面进行小规模改造,在更加复杂的基因组结构变异层面的人工构建技术仍具有挑战。

天津大学科研团队正是瞄准这一难题,在去年报道的合成酵母染色体的基础上,研究出能够精准控制基因重排的方法,使作为研究对象的微生物——酵母菌,在有限时间内产生几何级增长的基因组变异,驱动其快速进化。他们还开创多种方法使变异后的酵母菌株具备稳定的生物活性,并作为细胞工厂来高效率产出β-胡萝卜素。

酿酒酵母是生物学研究中的模式真核单细胞生物。论文《精确控制合成型单倍体和二倍体酵母基因组重排》通讯作者元英进教授表示,“化学合成酵母一方面可以帮助人类更深刻地理解一些基础生物学的问题,另一方面可以通过基因组重排系统,实现快速进化,得到在医药、能源、环境、农业、工业等领域有重要应用潜力的菌株。”

image.png

图1:精确控制基因组重排原理示意图

“为了能够精准调控合成型酵母基因组重排过程,我们为细胞设计了一把‘与门锁’,打开这把‘锁’要用两把‘钥匙’,只有在两把‘钥匙’同时转动的状态下,细胞内的基因组重排才会开启。”贾斌告诉记者,这两把“钥匙”是指添加到菌株培养基中的两种物质——半乳糖和雌激素。“在半乳糖和雌激素的作用下,合成型酵母产生一种重组酶,使整个染色体上的重组单元随机发生缺失、倒位、重复、易位。细胞因染色体结构的重排导致细胞从基因组成、转录到表达均发生改变,产生多样的变种酵母,进而大大加速细胞的进化速度。”通过使用这一精准控制技术对合成型酵母基因组进行多轮迭代重排,酵母种类多样性得到极大丰富,研究人员从中筛选出大量高产β-胡萝卜素的菌株,并成功验证了表达高产β-胡萝卜素性状的基因组合。实验表明,经过5轮迭代基因组重排,合成型酵母菌中β-胡萝卜素产量提升了38.8倍。上述成果刊发在《精确控制合成型单倍体和二倍体酵母基因组重排》一文中。

“通过建立适当的筛选目标和方法,可以快速筛选出接近目标性状的菌株;通过进一步的深度测序和长片段测序技术可以快速分析并挖掘新的基因靶点。多轮迭代基因组重排技术可以大幅加速生产菌株的快速进化,解析基因组结构变异与功能发现之间的关系,提升能源医药化学品的生产合成,对于工业菌株进化和功能知识发现具有重要意义。”吴毅说到。

在上述研究基础上,研究人员还首次将合成型酵母基因组的重排系统拓展到杂合二倍体和跨物种二倍体菌株。相关成果刊发在《杂合二倍体与跨物种基因组重排技术》一文中。

图2:杂合二倍体与跨物种基因组重排技术原理示意图

据了解,作为实验对象的酿酒酵母,分为人工合成基因组的合成型酵母和未经基因组合成的野生型酵母。酵母细胞的生活周期中依据染色体数量不同分为单倍体和二倍体两种状态,可以在不同阶段发生有丝分裂和减数分裂。




上一篇:浙江中医药大学副校长郭清:为什么我们的病越治越多?
下一篇:国人对药酒情有独钟?深陷是非旋涡中的药酒