“错误”观念也有用:摩尔根和现代遗传学的起



原创 李峰 返朴
格兰德·艾伦(Garland E. Allen)是生物学领域思想史研究的重要人物之一,于2017年荣膺科学史领域最重要的奖项——萨顿奖。艾伦教授对遗传演化有深刻理解,本文根据他2013年发表的一篇科学史论文进行了节选编译,文章通过考察现代遗传学之父、美国生物学家托马斯·亨特·摩尔根(Thomas Hunt Morgan)由胚胎学家转变为遗传学家的案例,佐证了科学研究的特质——“错误”的观念也可以很有用处,精彩还原了遗传学发展史上激动人心的一个片段。

“错误”观念也有用:摩尔根和现代遗传学的起

Garland E. Allen
编译|李峰
在教科书中或课堂上,人们习惯于以当下的标准来解释过去那些“错误观点”,指出谬误所在,却对这些谬误产生的背景乃至受到追捧的原因避而不谈。然而,恰恰是那些后来被证伪的假说,隐含了科学研究中的诸多精彩细节和内幕,也真实呈现出科学始终是“在争议中前行”的动态发展的本质。
20世纪前十年,后来被誉为“现代遗传学之父”的美国生物学家托马斯·亨特·摩尔根(Thomas Hunt Morgan)强烈反对当时最重要的三种观点:达尔文自然选择理论、遗传的染色体理论以及孟德尔遗传学。但他随后改变了对这三种理论的态度,发展出充满生命力的研究体系,铺平了统一遗传学和达尔文演化理论的道路,这就是30年代的“综合进化论”(the evolutionary synthesis)。1933年的诺奖得主、被誉为“现代遗传学之父”的美国进化生物学家托马斯·摩尔根(Thomas Hunt Morgan,1866.9.25-1945.12.4)是个难以捉摸的人物。英国遗传学家威廉·贝特森(William Bateson)称之为“完全没有一点自负”的人——特别是碰到他不懂的事的时候——并且美籍俄裔遗传学家西奥多修斯·杜布赞斯基(Theodosius Dobzhansky)认为他是怀疑论者、特立独行的人,经常语出惊人,而又始终保持绅士风度。这是摩尔根众多个性特点中的两例,但是非常适合考察他在遗传学研究中的角色。

“错误”观念也有用:摩尔根和现代遗传学的起

摩尔根
摩尔根的生物学训练开始于约翰霍普金斯大学,学习形态学。那时候形态学的核心是运用胚胎发育中的特征来构建演化上的关联(系统发育)。形态学概念充满想象又有意思,可以产生出各种不同的解释,但是没有一种能够被严格地检验。像很多同时代人物一样,摩尔根彻底厌倦了本质上是极度臆测的形态学研究工作。特别是在1890年代,到意大利拿波里动物研究所(Naples Zoological Station)访学之后,他熟悉了胚胎生物学中新兴的实验研究工作,很快成为实验生物学的热心支持者。在实验中可以人为干涉,每次控制一个变量,从而严格地检验假说。
质疑主流理论题
1
反对达尔文理论
1903年,摩尔根在他的《演化与适应》一书中阐明了对达尔文自然选择理论的反对。需要指出的是,摩尔根完全赞同演化过程——也就是逐代改良(descent with modification)。因为在他看来,自然选择的机制,作用于小的、独立的变异,永远不能产生新种。虽然达尔文依赖于把人工选择类比于自然选择,以此强调种的可变性,但现在我们都知道了,经过育种者几百年来的选育,从没产生过任何“新种”。作为一种替代方案,二十世纪初,摩尔根曾经特别着迷荷兰植物学家德佛里斯的突变理论。德佛里斯认为一代的大幅度改变就可以产生新种,我们今天称之为“大突变”(macromutations)。摩尔根对德佛里斯的主张印象深刻,因为他对温室中的模式生物月见草 (Oenothera)突变体进行了研究,突变体可以通过实验的方法来检验。
摩尔根认为达尔文观点中还有其他问题。比如任何性状要想有适应性,它必须是完全形成的。如果是不完全形成的器官,比如脊椎动物的眼,就会适应性很低,或者完全没有适应性。因此,在这些很多小的步骤中怎么可能实现演化呢,没有哪个微小的突变对个体来说有任何适应性价值。
2
反对染色体遗传说
就像厌恶臆测的方法而反对自然选择一样,摩尔根也反对当时的染色体遗传理论。当时大多数生物学家意识到,有丝分裂和减数分裂中复杂而有规则的染色体运动预示着某些重要的东西,但是这些东西到底是什么则完全不清楚。最流行的观点是这一定跟遗传有些关联,但是直到1909年摩尔根对这种说法仍然十分怀疑。比如,他指出在两次细胞分裂的间期,棒状染色体消失在视野中。摩尔根问道,如果它们在每次细胞周期的末尾都解体,染色体又如何能维持细胞代际间的遗传稳定?我们怎么知道下一次循环中,染色体构建出了同样的结构呢?
对于摩尔根来说,更加矛盾的地方是当时的另外一个重要案例——性别决定问题。1904到1905年,哥伦比亚大学生物系主任艾德蒙德·威尔森和布林马尔女子学院的奈特·史蒂文斯确定了性别的决定是由一对染色体的分布控制的,就是所说的X染色体或者副染色体。但摩尔根觉得这种解释自相矛盾:绝大多数动物中雄性动物有一条X染色体,而雌性个体有两条;但是鸟类、蝴蝶和蛾子三类动物中情形相反。同一种染色体分布如何能够在一类情形时决定雄性,而在另一类又决定雌性?
3
反对孟德尔遗传
在他批评染色体学说的同一年,他还写文章猛烈批判快速发展的孟德尔遗传理论(Morgan 1909)。他发现孟德尔学派像其他老一派形态学家一样,随意地毫无节制地臆测。例如,为了解释预期的孟德尔比例中出现的异常(比如上位作用),孟德尔主义者简单引入不同的因子:“如果一个因子不能解释现象,那就引入两个因子;如果两个还不够用,三个也许就管用了……”,摩尔根称之为“高级杂耍”。而且,摩尔根还注意到,决定性状的孟德尔主义“因子”散发着就形态学预成论的气息,把发育过程(包括分化)归结为假定的“完全决定的”微小个体,或者来自精子,或者来自卵子,以此回避了成体中的性状到底是如何形成的问题[1]。显然摩尔根的这一质疑是对的。孟德尔最初的理论完全没有提到胚胎发育,只是一个描述一代传给另一代的杂交过程中性状分布的理论。
抛开这些反对自然选择、染色体、孟德尔遗传理论的具体理由,是什么让摩尔根在很短时间内对三种理论改变立场?
果蝇带来的改变
01
摩尔根的第一次观念改变
1908年,摩尔根开始在实验室培养果蝇,想看看是否能在动物中发现德佛里斯式的新种水平大突变。摩尔根让一个学生在他的实验动物学课程中使用果蝇,暗中连续培养69代,来检验获得性性状可遗传的“新拉马克主义”实验结果是否定的。然而在这一过程中,摩尔根确定果蝇是个很好的实验体系,它易于获取,培养廉价,不占空间,每2-3周繁殖一代。但是然而直到1909年冬天,他没有得到任何重要结果。在1910年1月,摩尔根发现了几个突变体,最显眼的突变体是“三叉戟” (Carlson 2004: pp. 170–171)。与野生型杂交,这一性状看起来像是隐性的,但是在第二代,有很多变种,很难建立起纯系。1910年春天,又出现两个突变体:Olive(2月)和Speck(3月)。但是这两个突变体看起来都不是明显的孟德尔定律预期的3:1或者9:3:3:1比例,这也印证了摩尔根早先的观点,孟德尔的不连续的显隐分类是很武断的。在这一时期摩尔根也开始重新考虑他对于染色体理论的观点。因为威尔森和史蒂文斯的结果清楚地表明性别与染色体构型有着某种关联。即使有摩尔根质疑的那些问题,这种关联太有规律了,不大可能仅仅是人为的假想。另外,1905-1908 年,植物学家和动物学家的细胞学研究清楚地说明雄配子(花粉或精子)有两种类型,差别在于是携带了X染色体,还是携带了怪异的对应的Y染色体。总之,对于大多数生物来说,看起来都是雄配子决定性别。这就能轻松解释绝大多数生物中观察到的雌雄比保持1:1。性别决定研究与西奥多·鲍维里新进发表的“染色体特性”也很符合,也就是每一对染色体可能决定一对性状或者发育过程 (Boveri 1907)[2]。



上一篇:微生物学研究聚焦现代细胞内共生现象
下一篇:中国科学院生物化学与细胞生物学苏州研究院