从微致变 迈向智能 —2022年世界科技发展回顾·新材料篇



  科技日报国际部

  年度盘点

  2022

  Russia

  俄罗斯

  碳纳米纤维增加铝材硬度

  开发智能玻璃制造新技术

  ◎本报驻俄罗斯记者 董映璧

  铝及其合金是现代工业和技术的关键材料之一。俄罗斯国家研究型技术大学科研人员将碳纳米纤维添加到铝复合材料中,使其硬度增加了20%,材料结构在微观层面上也发生了极大变化。这项研究不仅改善了特定铝合金的性能,而且对许多铝及其合金部件都具有重要的实际意义。

  别尔哥罗德国立研究大学基于铁、钴、镍、铬和碳开发出了高强度、高延展性合金,在-150℃及更低温度下具有出色的性能,强度比最好的同类产品高一倍半,并具有24%的出色延展性。新合金可广泛用于探索太空、海洋、北极和南极所需的技术系统。

  托木斯克理工大学科研人员提出了一种利用激光和石墨烯对玻璃进行改性的技术,开发出基于石墨烯和玻璃的复合材料。这种技术允许用石墨烯“画出”所需的结构,将其融合到几毫米厚的玻璃中,有助于在玻璃产品中制造出石墨烯导电结构,作为积成电子产品的基础,最终实现用石墨烯制造新一代电子产品。新材料可长时间使用而性能不降低,可用于开发廉价高效的柔性电子产品、新型光电器件以及具有扩展功能的各种玻璃产品。

  俄罗斯国立研究型技术大学超硬和新型碳材料研究所与俄罗斯科学院西伯利亚分院物理研究所首次合成一种基于含钪碳纳米结构的富勒烯超硬材料。研究表明,电与不含钪的聚合富勒烯晶体相比,该材料的刚性较低,但同时相变压力也较低,这能降低该结构的实验室获取难度。该技术可用于研发适用于光伏、光学器件、纳米电子学和生物医学的新型超硬材料。

  法 国

  France

  开发便宜无毒新型热电材料

  DNA微机器人探索细胞过程

  ◎本报驻法国记者 李宏策

  法国CRISMAT实验室研究人员开发出安全且廉价的热电材料,该材料由铜、锰、锗和硫组成,生产过程相当简单。他们使用球磨机简单将铜、锰、锗、硫粉末机械合金化,形成一个预结晶相,然后在600℃下烧结使其致密化,所生产的新型材料可将热能转化为电能且在400℃下仍能保持稳定。研究人员发现,用铜代替一小部分锰会产生复杂的微结构,具有相互连接的纳米域、缺陷和相干界面,会影响材料的电子和热传输特性。未来研究人员将进一步改进这种新型无毒热电材料,替代传统含铅、碲等有毒元素的材料。

  法国国家健康与医学研究院、国家科学研究中心和蒙彼利埃大学研究人员使用DNA折叠方法,即用DNA分子作为构建材料,以预定义的形式自组装3D纳米结构,制成DNA纳米机器人,可用来更好地了解细胞机械敏感性的分子机制,并发现对机械力敏感的新细胞受体,还能在细胞水平更精确地研究施力过程中,生物和病理过程的关键信号通路何时被激活。

  日 本

  Japan

  新系统按需合成光气衍生品

  机械手指上“长出”仿真皮

  ◎本报记者 张梦然

  日本神户大学研究小组首次成功开发出以氯仿为前体的新型流式按需合成系统,使用这个系统能够合成光气衍生的化学产品。此外,他们实现了超过96%的高转化率,在短时间内(一分钟或更短的曝光时间)合成了这些有用的化合物。该系统具有多重优势,安全、廉价且简单,对环境影响小,可用于合成各种化工产品并连续大量生产。研究人员预计,该系统可以在不久的将来扩大为工业生产的模型系统。

  大阪大学研究人员开发出一种方法,将一个不显眼的可食用标签嵌入食物中,无需先破坏食物即可读取相应数据,而且这种标签完全不会改变食物的外观或味道。

  信州大学纤维工程研究所材料科学家开发出一种由超细纳米线编织而成的纺织品。这种线由相变材料和其他材料制成,与电热和光热涂层结合在一起,最终成为一种面料,能根据需要对不断变化的温度做出反应,在穿着者身上升温或降温。

  东京大学科学家在机器人身上制作出“活的”类人皮肤,不仅为机械手指提供了人类皮肤般的质感,还具有防水和自愈功能,让人们离科幻目标又近了一步。

  名古屋大学研究团队合成了一种带状分子纳米碳,具有扭曲的莫比乌斯带拓扑结构,即莫比乌斯碳纳米带。构建结构均匀的纳米碳,对于纳米技术、电子学、光学和生物医学应用中的功能材料的发展至关重要。

  韩 国

  South Korea

  “元表面”纳米材料可调谐

  新聚合物常温下能生物降解

  ◎本报驻韩国记者 薛 严




上一篇:合力打造优势产业集群(产经观察·关注数字产业集群③)
下一篇:新知|探访“国之重器”纳米真空互联实验站